Drawing Graphs with Vertices and Edges in Convex Position

نویسندگان

  • Ignacio García-Marco
  • Kolja B. Knauer
چکیده

A graph has strong convex dimension 2 if it admits a straightline drawing in the plane such that its vertices form a convex set and the midpoints of its edges also constitute a convex set. Halman, Onn, and Rothblum conjectured that graphs of strong convex dimension 2 are planar and therefore have at most 3n− 6 edges. We prove that all such graphs have indeed at most 2n − 3 edges, while on the other hand we present an infinite family of non-planar graphs of strong convex dimension 2. We give lower bounds on the maximum number of edges a graph of strong convex dimension 2 can have and discuss several natural variants of this graph class. Furthermore, we apply our methods to obtain new results about large convex sets in Minkowski sums of planar point sets – a topic that has been of interest in recent years.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometric Embedding of Path and Cycle Graphs in Pseudo-convex Polygons

Given a graph G with n vertices and a set S of n points in the plane, a point-set embedding of G on S is a planar drawing such that each vertex of G is mapped to a distinct point of S. A straight-line point-set embedding is a point-set embedding with no edge bends or curves. The point-set embeddability problem is NP-complete, even when G is 2-connected and 2-outerplanar. It has been solved poly...

متن کامل

Convex Geometric Graphs with No Short Self-intersecting Paths

Pach, Pinchasi, Tardos and Tóth proved that in a straight-line graph drawing in which no path of length 3 crosses itself (called locally planar) the number of edges can be superlinear in the number of vertices. In contrast, this paper shows that if the vertices form a convex set such a graph drawing (here named locally outerplanar) has at most a linear number of edges. As an important developme...

متن کامل

Convex Grid Drwaings of Four-Connected Plane Graphs

A convex grid drawing of a plane graph G is a drawing of G on the plane so that all vertices of G are put on grid points, all edges are drawn as straight-line segments between their endpoints without any edge-intersection, and every face boundary is a convex polygon. In this paper we give a linear-time algorithm for finding a convex grid drawing of any 4-connected plane graph G with four or mor...

متن کامل

On-Line Convex Plabarity Testing

An important class of planar straight-line drawings of graphs are the convex drawings, in which all faces are drawn as convex polygons. A graph is said to be convex planar if it admits a convex drawing. We consider the problem of testing convex planarity in a semidynamic environment, where a graph is subject to on-line insertions of vertices and edges. We present on-line algorithms for convex p...

متن کامل

The Minimum Bends in a Polyline Drawing with Fixed Vertex Locations

We consider embeddings of planar graphs in R where vertices map to points and edges map to polylines. We refer to such an embedding as a polyline drawing, and ask how few bends are required to form such a drawing for an arbitrary planar graph. It has long been known that even when the vertex locations are completely fixed, a planar graph admits a polyline drawing where edges bend a total of O(n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Comput. Geom.

دوره 58  شماره 

صفحات  -

تاریخ انتشار 2015